1	(i) $3^{7/2}$ oe or $k = 7/2$ oe	2	M1 for $\frac{3^4}{\sqrt{3}}$ or $\frac{81}{3^{1/2}}$ or $81 \times 3^{-1/2}$ or $3^3 \sqrt{3}$ or $27 \times 3^{1/2}$ or better or for $81 = 3^4$ or $\sqrt{3}$ $= 3^{1/2}$ or $\frac{1}{\sqrt{3}} = 3^{-1/2}$ or (following correct rationalisation of denominator) for $27 = 3^3$ isw conversion of 7/2 oe	M0 for just $81 = 3 \times 3 \times 3 \times 3$ oe – indices needed allow an M mark for partially correct work still seen in fraction form eg $\frac{3^4}{3^{-1/2}}$ gets mark for $81 = 3^4$
1	(ii) $\frac{14+5\sqrt{3}}{11}$ or $\frac{28+10\sqrt{3}}{22}$ www.isw	3	M1 for multiplying num and denom by $5 + \sqrt{3}$ and M1 for num or denom correct in final answer (M0 if wrongly obtained)	2^{nd} M1 is not dependent on 1^{st} M1

2	(i) $a^{6}b^{7}$ (ii) 16	2	B1 for two elements correct; condone multiplication signs left in SC1 for eg $250 + a^6 + b^7$
	(iii)	2	condone ± 64 M1 for $[\pm]4^3$ or for $\sqrt{4096}$ or for only -64

3	$ac = \sqrt{y} - 5$ o.e.	M1	M1 for each of 3 correct or ft correct steps s o i leading to y as subject
	$ac+5=\sqrt{y}$ o.e.	M1	
	$[y =](ac+5)^2$ o.e. isw	M1	or some/all steps may be combined;
			allow B3 for $[y=](ac+5)^2$ o.e. isw or B2 if one error

4	(i)	$\frac{1}{12}$ or $\pm \frac{1}{12}$	2	M1 for $\frac{1}{144^{\frac{1}{2}}}$ o.e. or for $\sqrt{144} = 12$ soi
4	(ii)	denominator = 18 numerator = $5 - \sqrt{7} + 4(5 + \sqrt{7})$ = $25 + 3\sqrt{7}$ as final answer	B1 M1 A1	B0 if 36 after addition for M1 , allow in separate fractions allow B3 for $\frac{25+3\sqrt{7}}{18}$ as final answer www

5	(i)	2	B1 for 5° or for 25 × 1/25 o.e.	
	(ii)	1		3

6	(i) 0.125 or	1	as final answer	
	(ii)	1		2

7	(i) ^{3.5} or $k = 3.5$ or 7/2 o.e.	2	M1 for $125 = 5^3$ or $\sqrt{5} = 5^{\frac{1}{2}}$ SC1 for $5^{\frac{3}{2}}$ o.e. as answer without working	
	(ii) $a^6 b^{10}$	2	M1 for two 'terms' correct and multiplied; mark final answer only	4

				1/2	
8	(i)	www	2	allow 2 for ± 5 ; M1 for $25^{1/2}$ seen or for 1/5 seen or for using $25^{1/2} = 5$ with another error (ie M1 for coping correctly with fraction and negative index or with square root)	
	(ii)	$x^{10}y^{13}z^4$ or $2^3x^{10}y^{13}z^4$	3	mark final answer; B2 for 3 elements correct, B1 for 2 elements correct; condone multn signs included, but -1 from total earned if addn signs	5

9	(i)	1		
	(ii) 1/64	3	M1 for dealing correctly with each of reciprocal, square root and cubing (allow 3 only for 1/64) eg M2 for 64 or -64 or $1/\sqrt{4096}$ or $\frac{1}{4^3}$ or M1 for $1/16^{3/2}$ or 4^3 or -4^3 or 4^{-3} etc	4

10	(i) x^4y	2	M1 for two elements correct; condone y^1		
	(ii)	2	M1 for $\left(\frac{2}{1}\right)^5$ or 2^5 soi or $\left(\frac{1}{32}\right)^{-1}$ or $\frac{1}{\frac{1}{32}}$	4	

11	(i)	2	M1 for $25^{\frac{1}{2}} = \sqrt{25}$ soi or for $\sqrt{25^3}$	
	(ii) $\frac{9}{49}$ as final answer	2	M1 for $a^{-1} = \frac{1}{a}$ soi eg by 3/7 or 3/49	4

12	(i) √6	2	1 for $30\sqrt{6}$ or $2\sqrt{6}$ or $2\sqrt{2}\sqrt{3}$ or $28\sqrt{2}\sqrt{3}$		
	(ii) – 12√5 isw	3	2 for 49 and 1 for – 12√5 or M1 for 3 correct terms from 4 – 6√5 – 6√5 + 45	5	

13	(i) 4	2	1 for 4 or 27	
	(ii) $a^{10}b^8c^{-2}$ or $\frac{3a^{10}b^8}{c^2}$	3	2 for 3 'elements' correct, 1 for 2 elements correct, -1 for any adding of elements; mark final answer; condone correct but unnecessary brackets	5